首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
测绘学   2篇
地球物理   19篇
地质学   24篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.
This research evaluates the performance of areal interpolation coupled with dasymetric refinement to estimate different demographic attributes, namely population sub-groups based on race, age structure and urban residence, within consistent census tract boundaries from 1990 to 2010 in Massachusetts. The creation of such consistent estimates facilitates the study of the nuanced micro-scale evolution of different aspects of population, which is impossible using temporally incompatible small-area census geographies from different points in time. Various unexplored ancillary variables, including the Global Human Settlement Layer (GHSL), the National Land-Cover Database (NLCD), parcels, building footprints and the proprietary ZTRAX® dataset are utilized for dasymetric refinement prior to areal interpolation to examine their effectiveness in improving the accuracy of multi-temporal population estimates. Different areal interpolation methods including Areal Weighting (AW), Target Density Weighting (TDW), Expectation Maximization (EM) and its data-extended approach are coupled with different dasymetric refinement scenarios based on these ancillary variables. The resulting consistent small area estimates of white and black subpopulations, people of age 18–65 and urban population show that dasymetrically refined areal interpolation is particularly effective when the analysis spans a longer time period (1990–2010 instead of 2000–2010) and the enumerated population is sufficiently large (e.g., counts of white vs. black). The results also demonstrate that current census-defined urban areas overestimate the spatial distribution of urban population and dasymetrically refined areal interpolation improves estimates of urban population. Refined TDW using building footprints or the ZTRAX® dataset outperforms all other methods. The implementation of areal interpolation enriched by dasymetric refinement represents a promising strategy to create more reliable multi-temporal and consistent estimates of different population subgroups and thus demographic compositions. This methodological foundation has the potential to advance micro-scale modeling of various subpopulations, particularly urban population to inform studies of urbanization and population change over time as well as future population projections.  相似文献   
25.
To assess micro-scale population dynamics effectively, demographic variables should be available over temporally consistent small area units. However, fine-resolution census boundaries often change between survey years. This research advances areal interpolation methods with dasymetric refinement to create accurate consistent population estimates in 1990 and 2000 (source zones) within tract boundaries of the 2010 census (target zones) for five demographically distinct counties in the US. Three levels of dasymetric refinement of source and target zones are evaluated. First, residential parcels are used as a binary ancillary variable prior to regular areal interpolation methods. Second, Expectation Maximization (EM) and its data-extended version leverage housing types of residential parcels as a related ancillary variable. Finally, a third refinement strategy to mitigate the overestimation effect of large residential parcels in rural areas uses road buffers and developed land cover classes. Results suggest the effectiveness of all three levels of dasymetric refinement in reducing estimation errors. They provide a first insight into the potential accuracy improvement achievable in varying geographic and demographic settings but also through the combination of different refinement strategies in parts of a study area. Such improved consistent population estimates are the basis for advanced spatio-temporal demographic research.  相似文献   
26.
27.
28.
Abstract

Knowledge of the relationship between rainfall intensity and kinetic energy and its variations in time and space is important for the prediction of erosion hazard. Kinetic energy and erosivity are also strongly controlled by raindrop size. However, studies on raindrop measurement and different practical techniques have been rarely documented. The current study therefore aimed to apply existing raindrop-size measurement techniques—the photographic, flour-pellet and stain methods, as well as an innovative flour-stain method—and to evaluate their applicability at several intensities in Mazandaran Province, Iran. The distribution of raindrop size obtained by the different methods was recorded and compared with those obtained through applying a high-speed imaging technique. All the analyses were made with the help of a SPSS software package. The results showed that the raindrop diameters ranged from 0.2 to 5.16 mm at different rainfall intensities. Statistical comparison of the methods using the Duncan test showed that the flour-pellet method presented similar results to the photographic technique; it was concluded that this can be used as a practical and inexpensive method to estimate a wide range of raindrop sizes.

Editor Z.W. Kundzewicz

Citation Sadeghi, S.H., Abdollahi, Z., and Khaledi Darvishan, A., 2013. Experimental comparison of some techniques for estimating natural raindrop size distribution on the south coast of the Caspian Sea, Iran. Hydrological Sciences Journal, 58 (6), 1374–1382.  相似文献   
29.
The article addresses the application of electrical resistivity imaging for engineering site investigation in Pishva Hospital, Varamin, Iran. Some aqueduct shafts exist in the study area backfilled by loose materials. The goals of this study are to detect probable aqueduct tunnels and their depth, investigate filling quality in the shafts as well as connection(s) between them. Therefore, three profiles were surveyed by dipoledipole electrode array. Also, to investigate the potentially anomalous areas more accurately, five additional resistivity profiles were measured by a Combined Resistivity Sounding-Profiling array (CRSP). According to the results of 2-D inversion modelling, a main aqueduct tunnel was detected beneath the central part of the site. Finally, the resistivity pattern of the detected aqueduct system passing the investigated area was provided using the obtained results.  相似文献   
30.
Crossing the flood on foot is one of the two major causes of flood-related death. This study was aimed to determine risk factors associated with risky behavior of crossing the flood on foot and modeling behavior of people when exposed to the flood. Data were gathered by a questionnaire in Quchan, a city of Iran. People with the age of 18–35 years old, those who do not take flood warnings seriously, individuals who do not have experience of exposure to flood and those who believe they have moderate to advanced level of swimming skills were identified as high risk groups. Appropriate group training programs can be set for them to reduce risky behavior of crossing the flood on foot.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号